Boxicity of graphs with bounded degree
نویسنده
چکیده
The boxicity of a graph G = (V,E) is the smallest k for which there exist k interval graphs Gi = (V,Ei), 1 ≤ i ≤ k, such that E = E1 ∩ . . . ∩ Ek. Graphs with boxicity at most d are exactly the intersection graphs of (axis-parallel) boxes in Rd. In this note, we prove that graphs with maximum degree ∆ have boxicity at most ∆2 + 2, which improves the previous bound of 2∆2 obtained by Chandran et al (J. Combin. Theory Ser. B 98 (2008) 443–445).
منابع مشابه
Geometric Representation of Graphs in Low Dimension
An axis-parallel k–dimensional box is a Cartesian product R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis–parallel) boxes in k–dimensional space. The concept of boxicity finds applications in various areas such a...
متن کاملBoxicity and maximum degree
An axis-parallel d–dimensional box is a Cartesian product R1 × R2 × · · · × Rd where Ri (for 1 ≤ i ≤ d) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension d, such that G is representable as the intersection graph of (axis–parallel) boxes in d–dimensional space. The concept of boxicity finds applications in various areas such a...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملParameterized and Approximation Algorithms for Boxicity
Boxicity of a graph G(V, E), denoted by box(G), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes in R. The problem of computing boxicity is inapproximable even for graph classes like bipartite, co-bipartite and split graphs within O(n)-factor, for any ǫ > 0 in polynomial time unless NP = ZPP . We give FPT approximation algorithms for compu...
متن کاملLower bounds for boxicity
An axis-parallel b-dimensional box is a Cartesian product R1×R2×· · ·×Rb where Ri is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009